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Abstract

Flow and heat transfer in biological tissues are analyzed in this investigation. Pertinent works are reviewed in order

to show how transport theories in porous media advance the progress in biology. The main concepts studied in this

review are transport in porous media using mass diffusion and different convective flow models such as Darcy and the

Brinkman models. Energy transport in tissues is also analyzed. Progress in development of the bioheat equation (heat

transfer equation in biological tissues) and evaluation of the applications associated with the bioheat equation are

analyzed. Prominent examples of diffusive applications and momentum transport by convection are discussed in this

work. The theory of porous media for heat transfer in biological tissues is found to be most appropriate since it contains

fewer assumptions as compared to different bioheat models. A concept that is related to flow instabilities caused by

swimming of microorganisms is also discussed. This concept named bioconvection is different from blood convection

inside vessels. The works that consider the possibility of reducing these flow instabilities using porous media are re-

viewed.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Porous medium is defined as a material volume con-

sisting of solid matrix with an interconnected void. It is

mainly characterized by its porosity, ratio of the void

space to the total volume of the medium. Earlier studies

in flow in porous media have revealed the Darcy law [1]

which relates linearly the flow velocity to the pressure

gradient across the porous medium. The porous medium

is also characterized by its permeability which is a mea-

sure of the flow conductivity in the porous medium. An

important characteristic for the combination of the fluid

and the porous medium is the tortuosity which represents

the hindrance to flow diffusion imposed by local

boundaries or local viscosity. The tortuosity is especially

important as related to medical applications. Later de-

velopments in porous media led to extended advanced

models for the Darcy law such as Forchheimer�s equa-

tion [2] and Brinkman�s equation [3] where the former is

applicable for large flow velocities while the latter takes

into account the boundary effects. These effects are not

taken into account in the Darcy�s equation.
Heat transfer in human tissues involves complicated

processes such as heat conduction in tissues, heat

transfer due to perfusion of the arterial-venous blood

through the pores of the tissue (blood convection),

metabolic heat generation and external interactions such

as electromagnetic radiation emitted from cell phones.

Bioheat is usually referred to heat transfer in the human

body. Biomedical engineers have attempted to accu-

rately model bioheat transfer in tissues since they are the

basis for the human thermotherapy [4] and the human

thermoregulation system [5].

The development of transport models in porous

media had a bearing in the progress of several applica-

tions such as geology, chemical reactors, drying and

liquid composite molding, combustion and biological

applications. In this review, the impact of the theory of

transport in porous media on medical and biological

sciences is discussed for different applications.

The review is arranged into five important categories

in biological applications. The first one deals with

transport in porous tissues due to mass diffusion. The
second topic deals with different investigations in con-

vective transport applications in biological tissues. Next,

approaches in obtaining structural information from

biological media such as magnetic resonance imaging

(MRI) relevant to porous media are discussed. The

fourth area that is covered is the development of the

bioheat equation within the tissue and the incorporation

of the theory of porous medium. The principle of bio-

convection is explained and ways to reduce flow insta-

bilities in bioconvection using porous media models are

discussed. These topics are reviewed and available

models using porous media are synthesized and analyzed

for future works. In this review, only works which are

most pertinent to the outlined study are selected and

analyzed. These works involve the following applica-

tions: tissue generation in scaffolds, transport in brain

tissues, MRI applications in analyzing the structure of

porous media, liquid chromatography, transport of

macromolecules in aortic media, blood flow through

contracting muscles, interstitial fluid flow in axisym-

metric soft connective tissue, thermal simulations within

the brain after head injury, hyperthermic sessions, heat

transfer in muscle and skin tissues, thermal therapy

applications and others.

2. Mass diffusion in tissues

Tissues can be treated as a porous medium as it is

composed of dispersed cells separated by connective

voids which allow for flow of nutrients, minerals, etc. to

reach all cells within the tissue (Fig. 1). Mass transports

of these substances in many biological and medical ap-

plications are achieved by diffusion within the tissue.

These applications can be found mainly in tissue re-

generation using scaffolds, transport of drugs and nu-

trients to brain cells and the transport of residual

solvents in scaffolds which are used in fabricating the

biodegradable scaffolds.

2.1. Mass diffusion in tissue regeneration applications

Galban and Locke [6,7] present an interesting theo-

retical work that considers mass diffusion as the only



Nomenclature

C concentration of a species

Cr concentration of a species in the cell phase

cp tissue specific heat

cpb blood specific heat

D diffusivity of the pure fluid

D� effective diffusivity of the porous medium

hbs interstitial convective heat transfer coeffi-

cient

K permeability of the porous medium

Ks saturation constant

Kc modified saturation constant

Km Michele–Menten constant

k tissue thermal conductivity

kb blood thermal conductivity

kd death rate coefficient

n semiempirical parameter

P fluid pressure

qm heat generation within the tissue

Rr localized rate of cell growth

�rr dimensional radial coordinate

rr radius of the cell phase

T tissue temperature

hT ib local arterial blood averaged temperature

hT is local tissue averaged temperature

TB arterial blood temperature

t time

u Darcy velocity

ub blood velocity

�uu dimensional axial velocity

V velocity vector

V averaging volume

Vmax rate constant

Vr volume of the solid phase

v Darcy velocity vector

Wb blood volumetric perfusion rate

x x-coordinate

Greek symbols

d average distance between the transverse

blood vessels

e porosity of the porous medium

k tortuosity

q tissue density

qf fluid density

qr density of the cell phase

l dynamic viscosity of the pure fluid

l1 Casson�s viscosity
~ll effective viscosity of the porous medium

sy fluid yield stress

�ss fluid shear stress

(a)
Averaging Volume

Cell

Fluid

(b)

Fig. 1. Schematic diagram for a tissue: (a) tissue and (b)

averaging volume.
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mechanism for cell seeding and nutrient transport in a

scaffold. They developed mathematical models for

chondrocyte generation (mature cartilage cells that serve

as an early skeletal frame work, they are more flexible

and compressible than bone) and nutrient consumption

in order to analyze the behavior of cell growth in a

biodegradable polymer matrix. Galban and Locke [7]

related mathematically in their model the increase in

the cell mass in the polymer matrix to the transport of
the nutrients. They considered applications where the

transport of nutrients is by diffusion such as for static

culture conditions. Accordingly, they described reaction

and diffusion of nutrients in a porous scaffold using the

primary species continuity equations along with the

volume averaging method, a well established method in

porous media [8]. The volume averaging method was

employed in their work in order to obtain a single av-

eraged nutrient continuity equation which contains the

effective transport properties such as the effective diffu-

sion and rate coefficients. These properties were related

to the porosity of the scaffold. The volume fraction of

the cells which is related to porosity of the scaffold is

determined by a mass balance on the seeded cells. Their

finding for the tissue growth rate is summarized by the

following equation:

der
dt

¼ 1

qrV

Z
Vr

Rr dV ð1Þ

where er is the ratio of the volume of the cell phase

within the averaging volume in the scaffold to the av-

eraging volume. Vr is the volume of the cell phase in the

scaffold within the averaging volume. The parameters Rr

and qr are the localized rate of cell growth and the



Table 1

Different kinetic models for the growth rate

Kinetic models Governing equation

Modified contois Rr ¼
kgCn

r

Kcqþ Cn
r

� kd

� �
qr

Moser Rr ¼
kgCn

r

Ks þ Cn
r

� kd

� �
qr

nth order heterogeneous Rr ¼ khCn
rjrr
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specific cell density, respectively. Galban and Locke [7]

listed three growth kinetics presented in the literature

which correspond to three different mechanisms. These

are the modified Contois, Moser and an nth-order het-
erogeneous reaction at the cell–void interface within the

implant. Their mathematical model is summarized in

Table 1. In Table 1, kg is the homogenous growth rate

coefficient while kh is the heterogonous growth rate co-

efficient. The parameters Cr, Kc, Ks, q, kd, rr and n are

the concentration of the nutrient within the cell phase,

modified Contois saturation constant, saturation con-

stant, the overall cell density, the death rate coefficient,

the radius of cell phase in the averaging volume within

the scaffold and a semiempirical parameter named as the

Moser parameter, respectively. They compared the the-

oretical cell growth data utilizing the previous models

with the experimental data found in the literature. The

results of comparisons indicated that cellular functions

along with mass transfer processes in porous media can

illustrate to a degree the general trends in the cell growth

behavior for various scaffold thicknesses. However, ad-

ditional experimental data and model improvements are

required to accurately explain the process of cell growth.

2.2. Mass diffusion in brain tissues

Nicholson [9] in his report about diffusion in brain

tissues indicated that diffusion is an essential mechanism

for delivering glucose and oxygen from the vascular

system to brain cells as well as in delivering drugs to the

brain and in the transport of informational substances

between cells, a process known as volume transmission.

He pointed that diffusion-generated concentration dis-

tributions of well-chosen molecules in the brain tissue

reveal its structure. This structure is characterized by the

volume fraction (porosity) of the tissue and the tortu-

osity. Nicholson [9] demonstrated that an increase in the

tortuosity and a decrease in the porosity have significant

effects in reducing the effective mass diffusivities of spe-

cies. He derived the following equation for mass trans-

port due to diffusion for isotropic tissues:

oC
ot

¼ D�r2C þ s
e

ð2Þ

where C, D�, s, e and t are the volume average concen-

tration of the species, effective diffusivity, mass source
density, porosity of the tissue and time, respectively. As

shown in the work of Nicholson [9], the effective diffu-

sivity is related to the tortuosity of the tissue k and the

diffusivity in the absence of the porous medium through

the following relation:

D� ¼ D

k2
ð3Þ

El-Kareh et al. [10] introduced additional viscosity

function fg into the definition of the effective diffusivity

as shown in Eq. (4)

D� ¼ D

ðkfgÞ2
ð4Þ

Nicholson [9] also incorporated several kinetics

models in the mass diffusion equation such as the non-

linear Michele–Menten (MM) kinetics [11]. This kinetic

model can describe the entry and consumption of oxy-

gen by cells as it diffuses and the removal of transmitter

substances, e.g. dopamine (neurotransmitter and hor-

mone), from extracelluar cells. Eq. (2) is changed to

the following when MM kinetics exists

oC
ot

¼ D�r2C þ s
e
� VmaxC
eðKm þ CÞ ð5Þ

where Vmax is a rate constant which represents a measure

of the number of uptake sites. It is worth noting that

uptake means the absorption by a tissue of some sub-

stance, food material, mineral and others. The MM

constant Km is a measure of the dissociation constant for

binding of the substrate, e.g. dopamine, to the uptake

sites on the cell membrane.

An example for the reduction in the protein diffu-

sivity due to tortuosity is shown in the work of Whang

et al. [12]. Nicholson and Rice [13] implied that the

tortuosity in brain tissue increases with a decrease in the

porosity. Nicholson [9] included the general diffusion

equation to be applied for anisotropic tissues such as

brain tissues. This is summarized in the following

equation in Cartesian coordinates:

oC
ot

¼ D

k2x

o2C
ox2

þ D

k2y

o2C
oy2

þ D

k2z

o2C
oz2

þ s
e

ð6Þ

where kx, ky and kz are the three off-diagonal compo-

nents of the tortuosity tensor. In addition, he pointed

that void fraction and tortuosity can reveal how the

local geometry of the brain changes with time or under

pathological conditions. Additional examples that focus

on transport of fluids by diffusion inside porous tissues

can be seen in the works of Woerly et al. [14] and

Koegler et al. [15]. They first analyzed neural tissue

formations within porous hydrogel while discussing the

feasibility of using liquid CO for reducing residual sol-

vents that are used in fabricating biodegradable poly-

meric devices (scaffolds). Reduction of residual solvents
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is important since excess solvent can interfere with tissue

response and alter the mechanical properties of the

scaffold. They fitted their results to the simple diffusion

model and predicted the time needed to dry different

scaffold sizes.
Fig. 2. Two culturing media: (a) spinner flask and (b) perfusion

flow system.
3. Magnetic resonance imaging applications in porous

media

Biological tissues contain fluid-filled compartments

(e.g. cells) that restrict the movement of the bulk solvent

water whose molecules move on a variety of time scales

including random Brownian diffusion and interact with

macromolecules within the tissues. This can affect their

nuclear magnetic resonance, an imaging technique that

does not use radiation) relaxation rates. Gore et al. [16]

indicated that technical developments that have been

driven on by biomedical applications of MRI can be

utilized in characterizing porous media. Gore et al. [16]

referred to some studies in their lab that include the

development of multiple quantum coherent methods for

studies of water diffusion in anisotropic macromolecular

assemblies and multiple selective inversion imaging to

depict the ratios of proton pool sizes and rates of

magnetization transfer between proton populations as

well as the diffusion tensor imaging to illustrate tissue

anisotropies. These show how various approaches uti-

lized in obtaining structural information from biological

media are also applicable to porous media.
Macroparticle

Throughpores

Spherical microparticle

(a) (b)

Fig. 3. Schematic diagram of bed with bidisperse particles:

(a) bidisperse medium and (b) macroparticle.
4. Flow convection in biological tissues

In certain biomedical applications, diffusion may not

be a sufficient mechanism for mass transport in porous

structures. The following applications illustrate the ne-

cessity for convective transport models in biological

systems with porous structures. The first application is

related to the production of an osteoinductive device

(material for repair of bone defects). This can be

achieved by the culture of seeded osteoblastic cells in

three-dimensional osteoconductive scaffolds in vitro.

However, it is a challenge for tissue engineers to culture

cells in scaffolds sufficiently large to bridge critical-sized

defects. This is because diffusion may not be sufficient to

supply nutrients into large scaffolds causing cells to grow

preferentially at the periphery under static culture con-

ditions. Goldstein et al. [17] considered three alternative

culturing schemes that convect media: a spinner flask, a

rotary vessel, and a perfusion flow system (direct pour-

ing of nutrient and cell flows, Fig. 2). They found that

cell numbers per foam to be similar with all culturing

schemes indicating that cell growth could not be en-

hanced by convection, but histological analysis (cell

analysis) indicates that the rotary vessel and perfusion
flow system produced a more uniform distribution of

cells throughout the foams consequently a more uniform

porosity for the scaffold. They concluded that culturing

techniques that utilize flow perfusion systems improve

the properties of the seeded cells over those maintained

in static culture.

The second application is related to adsorptive sep-

aration by high performance liquid chromatography

(separation based on differential absorption). This is an

important process in biotechnology for separation of

proteins where one of its important aspects is the

packing material. It is composed of porous particles and

it has been continuously improved in order to reduce

intraparticle mass transfer resistances. Leitao et al. [18]

indicated that elution chromatography (the separation,

by washing, of one solid from another) experiments

show that mass transfer resistance inside bidisperse po-

rous particles, Fig. 3 (contains microporous region made

by spherical microparticles and macroporous region

made by interconnected throughpores) is substantially

reduced by intraparticle convection. They performed a

mathematical and experimental study on separations of

two proteins, myoglobin (found in red skeletal muscle)

and bovine serum albumin (found in blood and lymph)

using bidisperse porous medium. In their mathematical

model, they accounted for adsorption on throughpore

walls, on the surface as well as in the interior of mi-

croparticles of the bidisperse particles and intraparticle

convection in throughpores where they utilized the
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Darcy model to govern the flow in the throughpores.

They found that protein transport is strongly restricted

by a film resistance around microparticles and that ex-

perimental convection effects on porous particles are

higher than those predicted by the mathematical model.

They attributed this anomaly to a flow rate dependent

film resistance around microparticles.

Another application is illustrated in the work of Kim

and Tarbell [19] who combined a simple mechanohy-

draulic model based on a two parameter strain-depen-

dent permeability function developed by Klanchar and

Tarbell [20], with a pore theory in order to determine the

transport properties of macromolecules in an artery wall

deformed inhomogeneously by the transmural (through

a wall) pressure. They determined the spatial distribu-

tion of the porosity, solute partition, pore radius and the

macromolecular solute concentration in the media based

on the combined theory and they found out their rela-

tionships with the transmural pressure. The predictions

from the pore theory were found to be in good agree-

ment with experimental measurements. Their results

indicate that convection is the dominate mechanism over

diffusion for albumin transport through the aortic me-

dia. Also, the results demonstrated that the transport

properties of planar tissues that are used in vitro ex-

periments can be different from those of intact vessels in

their natural cylindrical configuration. This is ascribed

to the variation in tissue deformation of these vessels in

their natural configuration.
4.1. Applications of Darcy model to flow in biological

tissues

Darcy model is considered to be the earliest flow

transport model in porous media. In his experiments on

unidirectional flow in a uniform medium, Henry Darcy

[1] revealed a linear proportionality between the flow

velocity and the applied pressure difference. Darcy

model is expressed by:

u ¼ �K
l
oP
ox

ð7Þ

where u, P , l and K are the Darcy velocity (the average

of the fluid velocity over the cross section), fluid pres-

sure, dynamic viscosity of the fluid and the permeability

of the porous medium, respectively. The permeability K
of the medium which has dimension of (length)2 depends

only on the geometry of the medium. In three dimen-

sions, Eq. (7) can be generalized to

v ¼ l�1K:rP ð8Þ

where the permeability K is a general second-order

tensor. The terms v and rP are Darcy velocity and

pressure gradient vectors. For isotropic porous medium,

the permeability is scalar and Eq. (8) reduces to
rP ¼ � l
K
v ð9Þ

Darcy model has been utilized successfully in several

biomedical applications leading to a number of devel-

opments in these areas. Huyghe and Vancampen [21]

presented a constitutive formulation for finite deforma-

tion of porous solids in order to model flow through

different hierarchical arrangements. They developed an

extended Darcy model utilizing an averaging method

which transformed the network of pores into a contin-

uum. They considered the pores as a network of cylin-

drical vessels in which Poiseuille-type pressure-flow

relationships are valid. The relationships between stress,

strain, strain rate, fluid volume fraction, fluid volume

fraction rate and time were obtained using irreversible

thermodynamics arguments. Their work has applications

in the field of the mechanics of blood perfused through

soft tissues. They demonstrated that their theory is

consistent with Biot�s finite deformation theory in porous

media for the limiting case where the pore structure has

no hierarchy. It is worth noting that Biot�s theory is

considered the first developed theory that can be used to

analyze the linear elastic behavior of a porous medium.

Later, Vankan et al. [22] compared a hierarchical mixture

model of blood perfused biological tissue that utilizes an

extended Darcy equation for blood flow with a network

analysis of the biological tissue. Good correspondence is

achieved between both methods if the hierarchical

quantification is based on the network fluid pressure.

Vankan et al. [23] also performed a simulation for

blood flow through a contracting muscle, with a hier-

archical structure of pores (the hierarchy corresponds to

the tree-like vascular structure). The fluid flow was de-

scribed by a Darcy model for deformable porous media

with second-order permeability tensor while fluid pres-

sure and hydrostatic solid pressures were related

through an elastic fluid solid interface. The state of the

fluid, the Darcy permeability tensor and the elastic in-

terface were taken to be functions of space as well as the

hierarchical level. They found that their calculated blood

pressures were approximately corresponding to blood

pressures measured in skeletal muscles.

Butler et al. [24] studied interstitial fluid flow in axi-

symmetric soft connective tissues such as ligaments or

tendons (fibrous tissue connecting bones and cartilage

and connective tissue that connects muscle to bone, re-

spectively) when they are in tension. The flow in these

tissues were modeled as Darcian flow through a porous

medium having the pressure and the velocity of the in-

terstitial fluid as the unknown variables. A parametric

study was conducted by varying the fluid viscosity and

the permeability of the solid matrix where they were

found to strongly affect the resulting fluid flow behavior.

Further, computed levels of fluid flow predicted a pos-

sible mechanism for load transduction for cells in the

tissue.
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Fig. 4. A model for the transport through a tumor; arrange-

ments of vessels in parallel layers, blood is supplied at Partery and
removed at Pvein, the interstitial pressure in the surrounding

normal tissue satisfies Pinterstitial ¼ 0.
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An important domain that deals with the application

of the Darcy model to flow through tissues is the blood

flow in tumors (abnormal mass of tissue that results

from excessive cell division that is uncontrolled and

progressive). Tumor blood flow is highly heterogeneous

when compared to normal tissues. Therefore, the growth

of the tumor and its response to therapy are determined

by transport of diffusible drugs to cancer cells and

consequently by their blood supply. The high leakiness

of tumor vessels could enhance fluid exchange between

the vascular and interstitial fluid flow which could lead

to a coupling between vascular, transvascular, and in-

terstitial fluid flow as shown in Fig. 4. Baish et al. [25]

considered a simple network model to model the im-

portant features of flow through a network of permeable

and compliant vessels embedded in an isotropic porous

medium. They used the Darcy model to represent the

flow through the porous medium and the Starling law to

describe the vascular fluid exchange (assuming vascular

fluid exchange flow rate is proportional to the pressure

difference across the vascular–porous medium interface),

and the leakiness from the vessels. Their results show

that drug delivery for chemotherapy and oxygenation

that are needed for radiotherapy may face difficulty to

reach the central region of the tumor despite the fact

that highly permeable vessels are present in these re-

gions.

Lei et al. [26] developed a complex model for trans-

vascular exchange and extravascular transport of both

fluid and macromolecules in a spherical solid tumor. The

microvascular lymphatics and tissue space were each

considered as a porous medium. The flow of blood and

lymph were described by the Darcy model while the

interstitial fluid is assumed to obey the Starling�s law.

They obtained analytical solutions for an isolated tumor

as well as for the normal tissue surrounding the tumor.

Their calculated interstitial pressures agreed with the
experimental observations. Their results and the results

of Milosevic et al. [27] revealed that the elevated inter-

stitial pressure was a major barrier in the penetration

of macromolecular drug into a tumor.

Preziosi and Farina [28] analyzed flow of a Newto-

nian fluid in a porous medium in the presence of mass

exchange between the constituents. They found out that

the Darcy model needs to be modified to account for the

mass exchange. Their study was based on a thermo-

dynamical analysis and using symmetry and frame

indifferent arguments. Preziosi and Farina [28] results

have application in tissue regeneration using scaffolds

under convective conditions where the correction coef-

ficient for the Darcy model is proportional to the cell

growth rate.
4.2. Applications of the Brinkman model to flows in

biological tissues

Darcy model ignores the boundary effects on the

flow. This assumption is not valid when the boundaries

of the porous medium have to be accounted for. As

such, the Brinkman model is usually employed

rP ¼ � l
K
vþ ~llr2v ð10Þ

Eq. (10) is referred in the literature as the Brinkman

model and was first developed by Brinkman [3,29]. The

first viscous term on the right is the Darcy term while the

second term on the right is analogous to the momentum

diffusion term in the Navier–Stokes equation with ~ll
being the effective dynamic viscosity of the medium. For

isotropic porous medium, Bear and Bachmat [30] argued

that the effective viscosity is related to the porosity

through the following relation:

~ll
l
¼ 1

e
k� ð11Þ

where e and k� are the porosity and tortuosity of the

medium, respectively. It is worth noting that the tortu-

osity is also a function of the porosity and can be rep-

resented by k� ¼
ffiffi
e

p
for packed beds [31].

Brinkman model has been effectively utilized in

several biomedical research works. Dash et al. [32]

employed the Brinkman equation to model the patho-

logical blood flow as accumulations of fatty plaques of

cholesterol and artery-clogging blood clots increase in

the lumen (the cavity or channel within a tube) of

the coronary artery shown in Fig. 5. They considered the

clogged region as a porous medium and treated the

permeability to be either constant or varying in the ra-

dial direction. They solved the integral form of the

momentum equation along with the Casson constitutive

equation (the non-linear relation between shear stress

and shear strain). This equation is given by:



r

z

Fig. 5. Schematic diagram for blood flow clogged by fatty

plaques and clots.
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�ss1=2 ¼ s1=2y þ
"
� l1

d�uu
d�rr

#1=2
; if �ssP sy

d�uu
d�rr

¼ 0; if �ss6 sy

ð12Þ

where sy and l1 denote the fluid yield stress and Cas-

son�s viscosity (viscosity at high shear rate), respectively.

The parameters �ss, �uu and �rr denote the fluid shear stress,

dimensional axial velocity and the dimensional radial

coordinate, respectively. They obtained analytical solu-

tions for the velocity distribution and found that the

flow rate frictional resistance increases drastically with

an increase in the yield stress and a decrease in the

permeability.

Tada and Tarbell [33] utilized the Brinkman model to

investigate the two-dimensional interstitial flow through

the tunica media (fibrous outer layers of a bulb) of an

artery wall in the presence of an internal elastic lamina

(IEL). This lamina separates the tunica media from the

subendothelial intima (inner layer of blood vessels).

They modeled the IEL as an impermeable barrier to

water flux except for fenestral pores which were uni-

formly distributed over the IEL. They treated the tunica

media as a heterogeneous medium which contains a

periodic array of smooth muscle cells (SMCs) implanted

in a fibrous matrix. This can simulate the interstitial

proteoglycan (higher molecular weight complex protein)

and collagen fibers. They found that the average shear

stress around the circumference of the SMC in the im-

mediate vicinity of the fenestral pore could be 100 times

greater than that around an SMC but away from the

IEL in the fully developed interstitial flow region. These

high shear stresses can affect SMCs physiological func-

tions.

4.3. Generalized flow transport models in biological tissues

In cases where fluid inertia is not negligible, the form

drag exerted by the fluid on the solid becomes signifi-

cant. Vafai and Tien [34,35] arrived at a generalized

model for flow transport in porous media which ac-
counts for various pertinent effects. This generalized

model is given by the following equation:

qf

e
ohVi
ot

�
þ hðV � rÞVi

�
¼ �rhP if þ l

e
r2hVi � l

K
hVi

� qfFe
K1=2

hVi � hVi½ �J ð13Þ

where F and qf are the dimensionless inertia term co-

efficient and the fluid density, respectively. The para-

meters hPif and J are the average pressure inside the fluid

and a unit vector oriented along the velocity vector V,

respectively. The quantities hVi, and hðV � rÞVi are the

local volume average of V and ðV � rÞV, respectively,
associated with the fluid. This generalized model also

accounts for the convective terms. This generalized

model or a more limited form of it is also referred to as

the Brinkman–Forchheimer–Darcy equation. There is a

lack of biological studies that utilize the Brinkman–

Forchheimer–Darcy model. It is important to utilize Eq.

(13) in tissue media especially those located near the

aortas or in skeletal tissues that have high perfusion

rates. Table 2 summarizes the features of the different

flow transport models described in this work. These

features are discussed in details and summarized in

works of Vafai and Tien [36] and Alazmi and Vafai

[37,38].
5. Bioheat equation

Biological tissues contain dispersed cells separated by

voids. Blood enter these tissues through vessels referred

to as arteries and perfuse to the tissue cells via blood

capillaries as shown in Fig. 6. Returned blood from the

capillaries are accumulated in veins where the blood is

pumped back to the heart. Energy transport in tissues is

due to thermal conduction, blood perfusion and heat

generation (e.g. metabolic heat generation). The energy

transport in a biological system is usually expressed by

the bioheat equation. The bioheat equation developed

by Pennes [39] is one of the earliest models for energy

transport in tissues (Fig. 6). Pennes considered all the

properties appearing for the conduction and thermal

storage terms to be for the tissue while he referred to the

blood properties in the blood perfusion term. This term

was modeled to be proportional to the difference be-

tween the arterial temperature and the temperature at a

given location. Pennes assumed that the arterial blood

temperature TB is uniform throughout the tissue (Fig. 6)

while he considered the vein temperature to be equal to

the tissue temperature which is denoted by T at the same

point. The equation that Pennes utilized is summarized

as follows, in its simplest form:

qcp
oT
ot

¼ k
o2T
ox2

þ cpbWbðTB � T Þ þ qm ð14Þ



Table 2

Summary of discussed and suggested flow transport models in porous media

Flow transport models Equation Features Applications

Darcy model Eq. (7) • Simple

• Considers Darcy resistance

• Neglects boundary conditions

• Neglects form drag

• Neglects convective terms

Tumors, perfused muscle tissues, flow in

soft connective tissues

Brinkman Model Eq. (10) • Considers Darcy resistance

• Accounts for boundary conditions

• Neglects form drag

• Neglects convective terms

Vessels blocked by cholesterol and blood

clots, muscles near artery

Brinkman–Forchheimer–

Darcy Model

(Generalized model)

Eq. (13) • Considers Darcy resistance

• Accounts for boundary conditions

• Accounts for form drag

• Accounts for convective terms

Suggested for high perfused skeletal tis-

sues and biomedical applications encoun-

tering relatively large inertia effects

Cutaneous Layer (outermost skin layer)

Blood capillaries Transverse vessels
Intermediate

θa θv Tissue

δ

Vein, TV=T Deep Tissue
Artery, TB Layer

Fig. 6. Schematic diagram for the intermediate tissue of the

skin.
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where t, x, q, cp, qb, cpb , Wb, k and qm are the time, space

coordinate, tissue density, tissue specific heat, blood

density, blood specific heat, blood volumetric perfusion

rate, tissue thermal conductivity and heat generation

within the tissue, respectively. Pennes equation has been

utilized in various biological research works and is

found to be quite useful because of its simplicity. An

example of more recent research works utilizing Pennes

equation is that of Zhu and Diao [40]. They used the

Pennes equation to simulate the steady state tempera-

ture distribution within the brain after head injury. They

determined where to place temperature sensors for in-

fants and adults beneath the brain tissue in order to

monitor the volumetric and average brain tissue tem-

perature. Another example is the work of Deng and Liu

[41]. They studied analytically using the Pennes equation

the effect of pulsative blood perfusion on the tissue

temperature.

Later Weinbaum and Jiji [42] utilized the hypothesis

that small arteries and veins are parallel and the flow

direction is countercurrent resulting in counterbalanced

heating and cooling effects. This kind of tissue vascu-
larization causes the isotropic blood perfusion term in

the Pennes equation to be negligible and it causes the

tissue to behave as an anisotropic heat transfer medium.

Accordingly, Weinbaum and Jiji [42] modified the

thermal conductivity in the Pennes equation by means of

an ‘‘effective conductivity’’ related quadratically to

blood perfusion rate which is affected by the dimensions

and the directions of the vessels. They also showed that

isotropic blood perfusion between the countercurrent

vessels can have a significant influence on heat transfer

in regions where the countercurrent vessels are under

70-lm diameter.

An important research work example that utilized

Weinbaum and Jiji�s [42] model is the work of Guiot

et al. [43]. They used the Weinbaum and Jiji�s model,

assuming a linear relation between the effective thermal

conductivity and the blood perfusion rate, to determine

the increase in the thermal conductivity in a perfused

tissue. Guiot et. al. reported an 11% increase in the

thermal conductivity and their results suggested that in

addition to a ‘‘temperature map’’, also ‘‘a perfusion

map’’ within the heated volume should be monitored

routinely throughout the hyperthermic sessions since the

local value of perfusion can vary substantially within

few centimeters. The importance of ‘‘effective thermal

conductivity’’ was further revealed by Song et al. [44]

who demonstrated that a tissue which exhibits only a

small increase in the thermal conductivity due to

countercurrent convection in its vasoconstricted state

(narrowing of the blood vessel) can exhibit more than

a fivefold increase in the thermal conductivity in its

vasodilated state (during relaxation of the muscle).

Wissler [45] pointed that the Weinbaum and Jiji�s [42]
model assumes that the mean temperature in the

neighborhood of an artery–vein pair is the arithmetic

mean of the arterial and venous blood at the point of

entry and that the temperature of blood draining into



4998 A.-R.A. Khaled, K. Vafai / International Journal of Heat and Mass Transfer 46 (2003) 4989–5003
veins from capillaries and small veins is equal to the

temperature of venous blood at the point of entry, as-

suming there is very little heat transfer between ther-

mally significant artery–vein pairs and the tissue. Wissler

[45] indicated that these assumptions are questionable

and the Weinbaum and Jiji�s [42] model was derived for

a subcutaneous region (tissues under the skin). Wissler

[45] denoted that muscle and skin are rather different

and a formulation appropriate for one may not be

applicable for another biological tissue.

Baish [46] presented a new bioheat transfer model

for a perfused tissue. He considered simulation of a

realistic vascular tree containing all thermally signifi-

cant vessels in a tissue using a physiologically-based

algorithm. His model was based on solving the conju-

gate convection of the blood coupled to the three-

dimensional conduction in the extravascular tissue

while accounting for a statistical interpretation of the

calculated temperature field. His work illustrates the

dependence of the temperature distribution on the flow

rate and the vascular geometry. He also illustrates that

the Pennes formulation of the bioheat transfer equation

accurately predicts the mean tissue temperature except

when the arteries and veins are in closely spaced pairs.

Baish�s model is useful for fundamental studies of tissue

heat transport. Baish suggested extending this work to

other forms of tissue transport including oxygen, nu-

trient, and drug transport. For heat transfer in muscle

tissues, Weinbaum et al. [47] found that a correction

factor or efficiency needs to be multiplied by the per-

fusion source term in the Pennes equation for bioheat

transfer in a muscle tissue. This coefficient is a function

of the vascular cross-sectional geometry and is inde-

pendent of the Peclet number. The value of this coef-

ficient is found to vary between 0.6 and 0.7 for most

muscle tissues.

5.1. Bioheat equation and transport through porous media

The real application of the porous media models and

bioheat transfer in human tissues is relatively recent.

Xuan and Roetzel [48,49] used the transport through

porous media concepts to model the tissue–blood system

composed mainly of solid particles (tissue cells) and in-

terconnented voids that contain either arterial or venous

blood. They utilized the principle of local thermal non-

equilibrium between the tissue and the blood to for-

mulate the thermal energy exchange between the tissue

and the blood at a given location. This requires a system

of two energy equations, one equation for the blood and

the other for the peripheral skeletal tissue, to describe

the energy exchange in the tissue.

5.1.1. Heat transfer equations for tissues

Xuan and Roetzel [48] utilized the local thermal non-

equilibrium model as described in the works of Amiri
and Vafai [50,51], Alazmi and Vafai [52] and Lee and

Vafai [53] to model the heat transfer within the artery

blood and the tissue. This model is summarized as fol-

lows:

eðqcpÞb
ohT ib

ot

 
þ ub � rhT ib

!

¼ r � ka
b � rhT ib

� �
þ hbs hT is

�
� hT ib

�
ð15Þ

ð1� eÞðqcpÞs
ohT is

ot
¼ r � ka

s � rhT is
� �

þ hbs hT ib
�

� hT is
�

þ qmð1� eÞ ð16Þ
where hT ib, hT is, ka

b, k
a
s , e, ub and hbs are the local arterial

blood averaged temperature, local tissue averaged tem-

perature, blood effective thermal conductivity tensor,

tissue effective thermal conductivity tensor, porosity of

the tissue, blood velocity vector and interstitial convec-

tive heat transfer coefficient, respectively. For isotropic

conduction, ka
s and ka

b are related to the tissue porosity

through the following relationships:

ka
s ¼ ð1� eÞk ð17Þ

ka
b ¼ ekb ð18Þ

where k and kb are constants representing tissue and

blood thermal conductivities, respectively. As seen from

Eqs. (15) and (16), the energy equations for both phases

are coupled by the interstitial convective heat transfer

[50–52,54–56]. This term represents the heat transfer to

the tissue due to blood convection. Xuan and Roetzel

[48,49] considered an effective thermal conductivity for

the blood in order to account for the blood dispersion.

The concept of thermal dispersion is well established

in the theory of porous media as presented in the works

of Amiri and Vafai [50,51]. It is worth noting that Xuan

and Roetzel [49] considered local thermal non-equilib-

rium between the artery blood, vein blood and the tissue

in constructing their bioheat model which is based on

the theory of porous media.

Xuan and Roetzel [48,49] indicated that much in-

formation is needed to solve the system of two phase

energy equations such as thermal and anatomic prop-

erties of the tissue, interstitial convective heat transfer

coefficients as well as the velocity field of the blood.

Therefore, local thermal equilibrium may serve as a

good approximation for the temperature field for certain

applications involving blood vessels of small sizes as can

be shown using Amiri and Vafai [50,51], Khanafer and

Vafai [52] and Marafie and Vafai [53]. In these appli-

cations, the tissue and the blood temperatures are the

same at any given location and Eqs. (15) and (16) reduce

to the following equation:

qcpð1
�

� eÞ þ qbcpbe
	 oT
ot

þ eðqcpÞbub � rT

¼ rð½ka
s þ ka

b� � rT Þ þ qmð1� eÞ ð19Þ
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The second term on the left is responsible for heat

transfer due to blood perfusion. The perfusion source

term, Hp, in Pennes equation is equal to HP ¼ qbwbcpb
ðTB � T Þ where wb is the flow rate of blood in the tissue

per unit volume of tissue. This term was derived based

on a uniform blood perfusion assumption.

In the absence of heat generation, the source term in

Eq. (16) reduces to HS ¼ hbs=ð1� eÞðhT ib � hT isÞ, when
this equation is divided by (1� e), while it has the

HE ¼ �eðqcpÞbub � rT form for Eq. (19). Pennes [39]

indicated that the temperature of the venous blood

leaving at a point is equal to the tissue temperature at

that point under equilibrium conditions between the

capillary tube and the tissue. He also considered the

arterial temperature to be uniform throughout the tis-

sue. As such, in our opinion, the local thermal equilib-

rium source term, HE, reduces to HE ¼ �½qbðubÞAVGecpb=
d�ðT � TBÞ based on Pennes assumptions where d and

ðubÞAVG are the average spacing between the transverse

blood vessels (artery and vein pairs, Fig. 6) and the

average blood velocity within blood capillaries con-

necting the transverse blood vessels (Fig. 1), respectively.

Since transverse blood vessels in the tissue (Fig. 1) are

equally spaced [57], the volumetric blood perfusion in

the Pennes equation is assumed to be constant and it is

approximately equal to Wp ¼ qbðubÞAVGecpb=d based on

Eq. (19). The interstitial convective heat transfer source

term, HS, represents the actual blood perfusion term

[48,49] for the Pennes bioheat equation. Under thermal

equilibrium conditions, the heat transfer equation based

on the theory of porous media is [37]

qcpð1
�

� eÞ þ qbcpbe
	 oT
ot

¼ rð½ð1� eÞk þ ekb�rT Þ þ b
qb ub
� �

AVG
ecpb

d
ðTB � T Þ

þ qmð1� eÞ ð20Þ

The correction factor b is unity under Pennes assump-

tions while it is less than one in real application [47].

Eq. (20) utilizes effective values for the thermal ca-

pacitance as well as thermal conductivity for the tissue–

blood medium. However, Pennes equation ignored the

influence of blood thermal capacitance and thermal

conductivity on the heat transfer. Moreover, the effective

heat generation is reduced in Eq. (20) since metabolic

heat generation occurs only in the tissue. Recently,

Romer [58] indicated that thermal capacitance, thermal

conductivity and the source term need to be averaged

over the control volume. However, he did not include

their relationship with respect to the blood vascular dia-

meters and dimensions. In addition, the size of blood

vessels within the tissue may be variable due to increases

in vessel branches allowing for variable porosity. This

causes the thermal capacitance to be anisotropic. It

should be noted that the thermal conductivity of the
blood usually contains a static component and a dis-

persive component as illustrated by Amiri and Vafai [50]

and Eq. (20). This causes the tissue–blood medium to be

anisotropic with respect to the thermal conductivity in

addition to the corresponding anisotropy indicated

by Weinbaum and Jiji [42] due to concurrent blood

flows.

Recently, Shih et al. [59] tried to relate the theory of

porous medium to heat transfer in tissues but he did not

introduce the blood perfusion in the energy balance for

the blood phase. That term is the interstitial convective

heat transfer as in the work of Xuan and Roetzel [48,49].

It appears that the term ð1� /ÞWbcbðT � TaÞ in Eq. (4) of

the work of Shih et al. [59] need to be eliminated as seen

in the work of Romer [58]. Although good agreement

exists between results predicted from Pennes equation

and experimental results [60,61], the assumption of uni-

form perfusion can lead to overestimated tissue temper-

atures. For example, Craciunescu et al. [62] in his work

for optimizing thermal therapy showed that errors in

temperature simulation can be reduced if a perfusion

map replaces the uniform perfusion term. Even though

the error can be reduced, still the difference between the

experimental results and the simulations of bioheat

equation can be relatively large for certain applications.

Craciunescu et al. [62] illustrated that simulations of the

combination between large traceable vessels and the

perfusion map yield the best results when compared with

MR thermometry for a patient with high-grade sarcoma

(a form of cancer that arises in the supportive tissues such

as bone, cartilage, fat or muscle). As such, developing

advanced heat transfer models in tissues such as a porous

medium model based on thermal non-equilibrium states

between the blood and the tissue is an important task

since it accounts for the blood convection inside the

blood vessels embedded in the tissue. The summary of the

previously discussed bioheat transfer models in this work

are listed in Table 3. In Section 6, a concept related to flow

instabilities caused by swimming of microorganisms is

discussed. This concept is named bioconvection and is

different from blood convection inside vessels.
6. Bioconvection

Bioconvection is a terminology assigned to pattern-

forming motions which are set up as a result of hy-

drodynamic instabilities in suspensions of swimming

microorganisms [63]. Examples of the patterns are

shown for suspensions of motile algae and of bacteria.

These suspensions swim upwards in all cases in still

water while being slightly denser than the water. Pedley

and Kessler [63] indicated that the upswimming causes

cells to accumulate in a thin layer near the upper surface

which becomes denser than lower regions. This density

distribution is unstable, and convective motions are



Table 3

Summary of presented bioheat transfer models

Bioheat transfer model Main features

Pennes [38] • simple

• based on uniform perfusion

• it is not valid for all tissues

Weinbaum and Jiji [41] • valid when arteries and veins are close leading to negligible blood perfusion effects

• utilizes an effective conductivity as function of the perfusion rate

Wissler [44] • avoids assumptions of the Weinbaum and Jiji�s [41] model

Baish [45] • complex and statistical based model

• considers simulation of a realistic vascular tree containing all thermally significant

vessels

Weinbaum et al. [46] • includes an efficiency term in Pennes source term to make Pennes equation applicable

to muscle tissues

Theory of porous media (Principle of

local thermal equilibrium) Amiri and

Vafai [50,51], Khanafer and Vafai [52],

Marafie and Vafai [53], Alazmi and

Vafai [37], Xuan and Roetzel [48,49]

• modifies Pennes equation by considering the following effects

(a) variations in the tissue porosity

(b) blood dispersion

(c) considers effective tissue conductivity

(d) considers effective tissue capacitance

Theory of porous media (Principle of

local thermal non-equilibrium) Amiri

and Vafai [50,51], Alazmi and Vafai

[52], Khanafer and Vafai [54], Marafie

and Vafai [55], Kuznetsov and Vafai

[56], Xuan and Roetzel [48,49]

• exact blood perfusion is included

• complex and require more flow and thermal information

• considers

(a) variations in the tissue porosity

(b) blood dispersion

(c) considers effective tissue conductivity

(d) considers effective tissue capacitance
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set up as in a shallow fluid heated from below. He

pointed that there is another mechanism of instability,

called gyrotaxis, which is unaffected by a horizontal

surface and can operate in a deep fluid. This is a con-

sequence of the fact that the cells at the bottom swim

upwards in the first place. Their average swimming di-

rection is determined by a balance between gravitational

and viscous torques. The bacteria consume oxygen as

they swim up. Therefore, the bioconvective motions

carry oxygen around with them, thus changing the

concentration gradient. Pedley and Kessler [63]. outlined

the important features that a mathematical description

of these flow instabilities must possess.

Kuznetsov and Jiang [64] formulated a new contin-

uum model for bioconvection in a dilute suspension of

swimming gravitactic microorganisms (microorganisms

tend to swim against the gravity) in a porous medium.

They investigated the existence and stability of a two-

dimensional plume in a tall, narrow chamber with stress-

free sidewalls. They utilized the Darcy model as well as a

microorganism conservation equation. They found that

there is a critical permeability below which there exist no

bioconvection which causes the cells to accumulate in

the top layer.
Later, Kuznetsov and Avramenko [65] obtained a

criterion on stability of the bioconvection using linear

stability analysis based on the Darcy model. This crite-

rion gives the critical permeability of the porous medium

through the cell eccentricity, average swimming veloc-

ity, fluid viscosity, and other relevant parameters. They

found that when microorganisms are close to a spheri-

cal shape, the most unstable disturbances have a zero

vertical wave number. However, if they are sufficiently

elongated, the most unstable disturbances have a non-

zero vertical number. Finally, mass transfer and flow

induced by solutal buoyancy forces in biological tissues

and their application to Magnetic Resonance Imaging

(MRI) are acquiring increased attention in recent

developments [66,67].
7. Concluding remarks

Significant applications of biomedical systems such

as biological tissues include flow, heat and mass transfer

through porous media. The transport theory in porous

media involving various models such as Darcy and

Brinkman models for momentum transport and local
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thermal equilibrium for energy transport were found to

be quite useful in describing different biological appli-

cations. These models were successfully utilized in ana-

lyzing biological tissues and systems and important

findings were obtained. It was found that models for

convective transport through porous media are widely

applicable in the production of the osteoinductive ma-

terial, simulation of blood flow of tumors and muscles

and in modeling blood flow when fatty plaques of cho-

lesterol and artery-clogging clots are formed in the

lumen. On the other hand, the diffusive transport models

were found to be mainly applicable in tissue regenera-

tion and transport of drugs and nutrients to brain cells.

Large number of applications are associated with heat

transfer in tissues such as thermal simulations within the

brain, hyperthermic sessions, heat transfer in muscle and

skin tissues and thermal therapy applications. The ne-

cessity of using more advanced transport models such as

the generalized flow model and the local non-thermal

equilibrium heat transfer model in analyzing biological

tissues was established.
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